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1. Quasitriangular Structures

Let K be a field. Throughout, ⊗ = ⊗K . Let B be a K -bialgebra
and let B ⊗ B be the tensor product K -algebra. Let U(B ⊗ B)
denote the group of units in B ⊗ B and let R ∈ U(B ⊗ B).

Definition 1. The pair (B,R) is almost cocommutative if

τ(∆B(b)) = R∆B(b)R−1 (1)

for all b ∈ B.

If the bialgebra B is cocommutative, then the pair (B, 1⊗ 1) is
almost cocommutative. However, if B is commutative and
non-cocommutative, then (B,R) cannot be almost cocommutative
for any R ∈ U(B ⊗ B) since in this case (1) reduces to the
condition for cocommutativity.
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Write R =
∑n

i=1 ai ⊗ bi ∈ U(B ⊗ B). Let

R12 =
n∑

i=1

ai ⊗ bi ⊗ 1 ∈ B⊗
3
,

R13 =
n∑

i=1

ai ⊗ 1⊗ bi ∈ B⊗
3
,

R23 =
n∑

i=1

1⊗ ai ⊗ bi ∈ B⊗
3
.

Definition 2. The pair (B,R) is quasitriangular if (B,R) is
almost cocommutative and the following conditions hold:

(∆B ⊗ IB)R = R13R23 (2)

(IB ⊗∆B)R = R13R12 (3)
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A quasitriangular structure is an element R ∈ U(B ⊗ B) so that
(B,R) is quasitriangular.

Let (B,R) and (B ′,R ′) be quasitriangular bialgebras. Then (B,R),
(B ′,R ′) are isomorphic as quasitriangular bialgebras, written
(B,R) ∼= (B ′,R ′), if there exists a bialgebra isomorphism
φ : B → B ′ for which R ′ = (φ⊗ φ)(R). Two quasitriangular
structures R,R ′ on a bialgebra B are equivalent quasitriangular
structures if (B,R) ∼= (B,R ′) as quasitriangular bialgebras.

Example 3. Suppose that B = KGD for G finite non-abelian.
Then (B,R) cannot be quasitriangular for any R ∈ U(B ⊗ B); B
has no quasitriangular structures.
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Example 4. Let n ≥ 1, and let Mn = {1, a, a2, . . . , an} be the
monoid with multiplication defined as aiaj = ai+j if i + j ≤ n and
aiaj = an if i + j > n. Let KMn be the monoid bialgebra with
linear dual KMD

n . By N. Byott [1, slide 14]: R = 1⊗ 1 is the only
quasitriangular structure for KMn and 1⊗ 1 is the only
quasitriangular stucture for KMD

n .

Example 5. Let K be a field of characteristic 6= 2, let C2 be the
cyclic group of order 2 generated by g and let KC2 be the group
bialgebra. Then there are exactly two non-equivalent
quasitriangular structures on KC2, namely, R0 = 1⊗ 1 and

R1 =
1

2
(1⊗ 1 + 1⊗ g + g ⊗ 1− g ⊗ g) .
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Example 6. Let K be a field of characteristic 6= 2. Let H be
Sweedler’s Hopf algebra [4, 1.5.6]:

H is the K -algebra generated by {1, g , x , gx} modulo the relations

g2 = 1, x2 = 0, xg = −gx ,

comultiplication ∆H : H → H ⊗K H is defined by

g 7→ g ⊗ g , x 7→ x ⊗ 1 + g ⊗ x ,

the counit map εH : H → K is defined as g 7→ 1, x 7→ 0, and the
coinverse map σH : H → H, is given by g 7→ g , x 7→ −gx .
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For a ∈ K , let

R(a) =
1

2
(1⊗ 1 + 1⊗ g + g ⊗ 1− g ⊗ g)

+
a

2
(x ⊗ x − x ⊗ gx + gx ⊗ x + gx ⊗ gx)

Then R(a) is a quasitriangular structure for H. Moreover, there are
an infinite number of non-equivalent quasitriangular structures of
the form R(a) for H, cf. [4, 10.1.17], [5].
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2. Why We Care

Proposition 7 (Drinfeld [2]). Suppose (B,R) is a quasitriangular
bialgebra. Then

R12R13R23 = R23R13R12. (4)

Proof. One has

R12R13R23 = R12(∆B ⊗ IB)(R) by (2)

= (R ⊗ 1)(
n∑

i=1

∆B(ai )⊗ bi )

=
n∑

i=1

R∆B(ai )⊗ bi

=
n∑

i=1

τ∆B(ai )R ⊗ bi by (1)
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= (
n∑

i=1

τ∆B(ai )⊗ bi )(R ⊗ 1)

= (τ∆B ⊗ IB)(
n∑

i=1

ai ⊗ bi )(R ⊗ 1)

= (τ∆B ⊗ IB)(R)R12

= (τ ⊗ IB)(∆B ⊗ IB)(R)R12

= (τ ⊗ IB)(R13R23)R12 by (2)

= R23R13R12.

2
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The equation
R12R13R23 = R23R13R12

is the quantum Yang-Baxter equation (QYBE), [4, Chapter 10].

Proposition 7 says that quasitriangular bialgebras determine
solutions to the QYBE.

Also:
Remark 8. Clearly, the QYBE always holds if the bialgebra is
commutative. So we really only care in the case B is
non-commutative or both non-commutative and
non-cocommutative.

Remark 9. To prove Drinfeld’s proposition we really didn’t need
that R is a unit in B ⊗ B, we only needed the weaker condition:
τ(∆B(b))R = R∆B(b).
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Now, suppose (B,R) is a quasitriangular bialgebra of dimension n
over K . Let {c1, c2, . . . , cn} be a K -basis for B. Then
{ci ⊗ cj ⊗ ck}, 1 ≤ i , j , k ≤ n, is a K -basis for the n3-dimensional

tensor product algebra B⊗
3

:= B ⊗ B ⊗ B.

The matrices in GLn3(K ) correspond to the collection of invertible
linear transformations B⊗

3 → B⊗
3
. Some of the matrices in

GLn3(K ) arise from the elements

R12 =
∑
i

ai ⊗ bi ⊗ 1,

R13 =
∑
i

ai ⊗⊗1⊗ bi ,

R23 =
∑
i

1⊗ ai ⊗ bi ,

as follows.
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For each pair ij = 12, 13, 23, let

R ij : B⊗
3 → B⊗

3
,

be the map defined by left multiplication by R ij .

Let µij be the transposition maps:

µ12 : B⊗
3 → B⊗

3
, x ⊗ y ⊗ z 7→ y ⊗ x ⊗ z ,

µ13 : B⊗
3 → B⊗

3
, x ⊗ y ⊗ z 7→ z ⊗ y ⊗ x ,

µ23 : B⊗
3 → B⊗

3
, x ⊗ y ⊗ z 7→ x ⊗ z ⊗ y .
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Next, define Rij : H⊗
3 → H⊗

3
to be the composition of maps

Rij = µijR
ij . Note that R12 and R23 are invertible K -linear

transformations of H⊗
3

which correspond to matrices in GLn3(K )
(with respect to the K -basis {ci ⊗ cj ⊗ ck}).

Proposition 10. Let K be a field and let (B,R) be a
quasitriangular bialgebra of dimension n over K . Then the
matrices R12,R23 in GLn3(K ) satisfy

R12R23R12 = R23R12R23. (5)

Proof. Use Drinfeld’s result. See [6, §4.3]. 2

Equation (5) is known as the braid relation.
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3. Variations

Recall Nigel’s Example 4 above:

Proposition 11 (Byott) [1]. Let n ≥ 1, and let
Mn = {1, a, a2, . . . , an} be the monoid with multiplication defined
as aiaj = ai+j if i + j ≤ n and aiaj = an if i + j > n. Let KMn be
the monoid bialgebra with linear dual KMD

n . Then 1⊗ 1 is the only
quasitriangular structure on KMD

n .

Proof. Let B = KMD
n . Clearly, 1⊗ 1 ∈ U(B ⊗ B) is a

quasitriangular structure on B. Suppose R ∈ U(B ⊗ B) is a
quasitriangular structure. Write

R =
∑

ai ,aj∈Mn

〈ai , aj〉eai ⊗ eaj ,

for 〈ai , aj〉 ∈ K×, eai (aj) = δi ,j .
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Thus,

(∆B ⊗ IB)R =
∑

ar ,as ,aj∈M

〈aras , aj〉ear ⊗ eas ⊗ eaj ,

and

R13R23 =

 ∑
ai ,aj∈Mn

〈ai , aj〉eai ⊗ 1⊗ eaj


×

 ∑
ai ,aj∈Mn

〈ai , aj〉1⊗ eai ⊗ eaj


=

∑
ar ,as ,aj∈Mn

〈ar , aj〉〈as , aj〉ear ⊗ eas ⊗ eaj .
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And so,
〈aras , aj〉 = 〈ar , aj〉〈as , aj〉,

for all ar , as , aj ∈ Mn.

Now,
〈an, aj〉 = 〈aran, aj〉 = 〈ar , aj〉〈an, aj〉,

for ar , aj ∈ Mn. And so, since 〈an, aj〉 ∈ K×,

〈ar , aj〉 = 1

for all ar , aj ∈ Mn. It follows that R = 1⊗ 1. 2

Robert G. Underwood Department of Mathematics and Computer Science Auburn University at Montgomery Montgomery, AlabamaSingular Weak Quasitriangular Structures



Remark 12. Similar to Proposition 11, the condition
(IB ⊗∆B)R = R13R12 implies

〈ai , aras〉 = 〈ai , ar 〉〈ai , as〉,

for all ai , ar , as ∈ Mn, and so, quasitriangular structures on KMD

correspond to bimorphisms Mn ×Mn → K× on Mn.

(Of course, in this case there is only one quasitriangular structure
on B = KMD

n , namely the trivial structure R = 1⊗ 1, and
consequently, there is exactly one bimorphism on Mn, namely the
trivial bimorphism.)

Robert G. Underwood Department of Mathematics and Computer Science Auburn University at Montgomery Montgomery, AlabamaSingular Weak Quasitriangular Structures



We ask: what happens if we relax the definition of quasitriangular
structure?

Suppose we no longer require

τ(∆B(b)) = R∆B(b)R−1,

(it’s weak, as in [1, slide 7]), and we no longer require that R be a
unit in B ⊗ B (it’s singular).

Definition 13. Let B be a K -bialgebra, and let R ∈ B ⊗ B. Then
R is a singular weak quasitriangular structure (SWQTS) on B
if

(∆B ⊗ IB)R = R13R23 (6)

(IB ⊗∆B)R = R13R12 (7)
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How do we compute the singular weak quasitriangular structures
on B? Of some help may be the following:

Proposition 14 (Drinfeld [3].) Let R =
∑n

i=1 ai ⊗ bi be a
singular weak quasitriangular structure on B. Then

(i) (1⊗
∑n

i=1 εB(ai )bi )R = R,

(ii) (
∑n

i=1 εB(bi )ai ⊗ 1)R = R.

Proof. See [3], [6, Proposition 4.1.9]. 2
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(Easier task:) Find all of the singular weak quasitriangular
structures on KMD

n , n ≥ 1.

Apparently, they will correspond to bimorphisms Mn ×Mn → K
(K , now, and not K×).

We consider the (modest) cases n = 1, 2.
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Case I. n = 1. Here, M1 = {1, a} with table

1 a

1 1 a
a a a

Let B = KMD
1 . Proposition 14 says we should look for structures

of the form

R = e1 ⊗ e1 + e1 ⊗ ea + ea ⊗ e1 + zea ⊗ ea,

for z ∈ K .

But then, (∆B ⊗ IB)R = R13R23 if and only if z2 = z .
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This gives two structures:

R0 = 1⊗ 1 = e1 ⊗ e1 + e1 ⊗ ea + ea ⊗ e1 + ea ⊗ ea,

which we already knew about, and another:

R1 = e1 ⊗ e1 + e1 ⊗ ea + ea ⊗ e1.

We have a non-trivial bimorphism on M1 defined by

〈1, 1〉 = 1, 〈1, a〉 = 1, 〈a, 1〉 = 1, 〈a, a〉 = 0.
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Case II. n = 2. Here, M2 = {1, a, a2} with table

1 a a2

1 1 a a2

a a a2 a2

a2 a2 a2 a2

Let B = KMD
2 . Proposition 14 says we should look for structures

of the form

R = e1 ⊗ e1 + e1 ⊗ ea + e1 ⊗ ea2 + ea ⊗ e1 + wea ⊗ ea + xea ⊗ ea2

+ ea2 ⊗ e1 + yea2 ⊗ ea + zea2 ⊗ ea2

w , x , y , z ∈ K .
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But then, (∆B ⊗ IB)R = R13R23 if and only if

y = w2

y = y2

y = wy
z = x2

z = z2

z = xz
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Solving this system yields 4 structures on B:

R0 = 1⊗ 1

R1 = e1⊗e1+e1⊗ea+e1⊗ea2 +ea⊗e1+ea2⊗e1+ea⊗ea2 +ea2⊗ea2 ,

R2 = e1⊗e1+e1⊗ea+e1⊗ea2 +ea⊗e1+ea2⊗e1+ea⊗ea+ea2⊗ea,

R3 = e1 ⊗ e1 + e1 ⊗ ea + e1 ⊗ ea2 + ea ⊗ e1 + ea2 ⊗ e1,

and (apparently) 4 bimorphisms M2 ×M2 → K on M2.
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Some of this can be explained by examining the structure of KMn

an a K -algebra.

Proposition 15. Let J(KMn) denote the Jacobson radical of
KMn, n ≥ 1.

(i) J(KMn) = (a− an), dimK (a− an) = n − 1.

(ii)

KMn
∼= Ka⊕ K (1− a)⊕

n−1⊕
i=1

(ai − an).

(iii) KMn/J(KMn) ∼= KM1
∼= K × K .
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