Singular Weak Quasitriangular Structures

Robert G. Underwood
Department of Mathematics and Computer Science Auburn University at Montgomery
Montgomery, Alabama

May 22, 2017

1. Quasitriangular Structures

Let K be a field. Throughout, $\otimes=\otimes_{K}$. Let B be a K-bialgebra and let $B \otimes B$ be the tensor product K-algebra. Let $U(B \otimes B)$ denote the group of units in $B \otimes B$ and let $R \in U(B \otimes B)$.

Definition 1. The pair (B, R) is almost cocommutative if

$$
\begin{equation*}
\tau\left(\Delta_{B}(b)\right)=R \Delta_{B}(b) R^{-1} \tag{1}
\end{equation*}
$$

for all $b \in B$.
If the bialgebra B is cocommutative, then the pair $(B, 1 \otimes 1)$ is almost cocommutative. However, if B is commutative and non-cocommutative, then (B, R) cannot be almost cocommutative for any $R \in U(B \otimes B)$ since in this case (1) reduces to the condition for cocommutativity.

Write $R=\sum_{i=1}^{n} a_{i} \otimes b_{i} \in U(B \otimes B)$. Let

$$
\begin{aligned}
& R^{12}=\sum_{i=1}^{n} a_{i} \otimes b_{i} \otimes 1 \in B^{\otimes^{3}} \\
& R^{13}=\sum_{i=1}^{n} a_{i} \otimes 1 \otimes b_{i} \in B^{\otimes^{3}} \\
& R^{23}=\sum_{i=1}^{n} 1 \otimes a_{i} \otimes b_{i} \in B^{\otimes^{3}} .
\end{aligned}
$$

Definition 2. The pair (B, R) is quasitriangular if (B, R) is almost cocommutative and the following conditions hold:

$$
\begin{align*}
& \left(\Delta_{B} \otimes I_{B}\right) R=R^{13} R^{23} \tag{2}\\
& \left(I_{B} \otimes \Delta_{B}\right) R=R^{13} R^{12} \tag{3}
\end{align*}
$$

A quasitriangular structure is an element $R \in U(B \otimes B)$ so that (B, R) is quasitriangular.

Let (B, R) and (B^{\prime}, R^{\prime}) be quasitriangular bialgebras. Then (B, R), (B^{\prime}, R^{\prime}) are isomorphic as quasitriangular bialgebras, written $(B, R) \cong\left(B^{\prime}, R^{\prime}\right)$, if there exists a bialgebra isomorphism $\phi: B \rightarrow B^{\prime}$ for which $R^{\prime}=(\phi \otimes \phi)(R)$. Two quasitriangular structures R, R^{\prime} on a bialgebra B are equivalent quasitriangular structures if $(B, R) \cong\left(B, R^{\prime}\right)$ as quasitriangular bialgebras.

Example 3. Suppose that $B=K G^{D}$ for G finite non-abelian. Then (B, R) cannot be quasitriangular for any $R \in U(B \otimes B) ; B$ has no quasitriangular structures.

Example 4. Let $n \geq 1$, and let $M_{n}=\left\{1, a, a^{2}, \ldots, a^{n}\right\}$ be the monoid with multiplication defined as $a^{i} a^{j}=a^{i+j}$ if $i+j \leq n$ and $a^{i} a^{j}=a^{n}$ if $i+j>n$. Let $K M_{n}$ be the monoid bialgebra with linear dual $K M_{n}^{D}$. By N. Byott [1, slide 14]: $R=1 \otimes 1$ is the only quasitriangular structure for $K M_{n}$ and $1 \otimes 1$ is the only quasitriangular stucture for $K M_{n}^{D}$.

Example 5. Let K be a field of characteristic $\neq 2$, let C_{2} be the cyclic group of order 2 generated by g and let $K C_{2}$ be the group bialgebra. Then there are exactly two non-equivalent quasitriangular structures on $K C_{2}$, namely, $R_{0}=1 \otimes 1$ and

$$
R_{1}=\frac{1}{2}(1 \otimes 1+1 \otimes g+g \otimes 1-g \otimes g)
$$

Example 6. Let K be a field of characteristic $\neq 2$. Let H be Sweedler's Hopf algebra [4, 1.5.6]:
H is the K-algebra generated by $\{1, g, x, g x\}$ modulo the relations

$$
g^{2}=1, x^{2}=0, x g=-g x,
$$

comultiplication $\Delta_{H}: H \rightarrow H \otimes_{K} H$ is defined by

$$
g \mapsto g \otimes g, x \mapsto x \otimes 1+g \otimes x,
$$

the counit map $\epsilon_{H}: H \rightarrow K$ is defined as $g \mapsto 1, x \mapsto 0$, and the coinverse map $\sigma_{H}: H \rightarrow H$, is given by $g \mapsto g, x \mapsto-g x$.

For $a \in K$, let

$$
\begin{aligned}
R^{(a)}= & \frac{1}{2}(1 \otimes 1+1 \otimes g+g \otimes 1-g \otimes g) \\
& +\frac{a}{2}(x \otimes x-x \otimes g x+g x \otimes x+g x \otimes g x)
\end{aligned}
$$

Then $R^{(a)}$ is a quasitriangular structure for H. Moreover, there are an infinite number of non-equivalent quasitriangular structures of the form $R^{(a)}$ for H, cf. [4, 10.1.17], [5].

2. Why We Care

Proposition 7 (Drinfeld [2]). Suppose (B, R) is a quasitriangular bialgebra. Then

$$
\begin{equation*}
R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12} \tag{4}
\end{equation*}
$$

Proof. One has

$$
\begin{aligned}
R^{12} R^{13} R^{23} & =R^{12}\left(\Delta_{B} \otimes I_{B}\right)(R) \quad \text { by }(2) \\
& =(R \otimes 1)\left(\sum_{i=1}^{n} \Delta_{B}\left(a_{i}\right) \otimes b_{i}\right) \\
& =\sum_{i=1}^{n} R \Delta_{B}\left(a_{i}\right) \otimes b_{i} \\
& =\sum_{i=1}^{n} \tau \Delta_{B}\left(a_{i}\right) R \otimes b_{i} \quad \text { by }(1)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sum_{i=1}^{n} \tau \Delta_{B}\left(a_{i}\right) \otimes b_{i}\right)(R \otimes 1) \\
& =\left(\tau \Delta_{B} \otimes I_{B}\right)\left(\sum_{i=1}^{n} a_{i} \otimes b_{i}\right)(R \otimes 1) \\
& =\left(\tau \Delta_{B} \otimes I_{B}\right)(R) R^{12} \\
& =\left(\tau \otimes I_{B}\right)\left(\Delta_{B} \otimes I_{B}\right)(R) R^{12} \\
& =\left(\tau \otimes I_{B}\right)\left(R^{13} R^{23}\right) R^{12} \quad \text { by }(2) \\
& =R^{23} R^{13} R^{12}
\end{aligned}
$$

The equation

$$
R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}
$$

is the quantum Yang-Baxter equation (QYBE), [4, Chapter 10].

Proposition 7 says that quasitriangular bialgebras determine solutions to the QYBE.

Also:
Remark 8. Clearly, the QYBE always holds if the bialgebra is commutative. So we really only care in the case B is non-commutative or both non-commutative and non-cocommutative.

Remark 9. To prove Drinfeld's proposition we really didn't need that R is a unit in $B \otimes B$, we only needed the weaker condition: $\tau\left(\Delta_{B}(b)\right) R=R \Delta_{B}(b)$.

Now, suppose (B, R) is a quasitriangular bialgebra of dimension n over K. Let $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a K-basis for B. Then $\left\{c_{i} \otimes c_{j} \otimes c_{k}\right\}, 1 \leq i, j, k \leq n$, is a K-basis for the n^{3}-dimensional tensor product algebra $B^{\otimes^{3}}:=B \otimes B \otimes B$.

The matrices in $\mathrm{GL}_{n^{3}}(K)$ correspond to the collection of invertible linear transformations $B^{\otimes^{3}} \rightarrow B^{\otimes^{3}}$. Some of the matrices in $\mathrm{GL}_{n^{3}}(K)$ arise from the elements

$$
\begin{aligned}
R^{12} & =\sum_{i} a_{i} \otimes b_{i} \otimes 1 \\
R^{13} & =\sum_{i} a_{i} \otimes \otimes 1 \otimes b_{i} \\
R^{23} & =\sum_{i} 1 \otimes a_{i} \otimes b_{i}
\end{aligned}
$$

as follows.

For each pair $i j=12,13,23$, let

$$
R^{i j}: B^{\otimes^{3}} \rightarrow B^{\otimes^{3}}
$$

be the map defined by left multiplication by $R^{i j}$.
Let $\mu_{i j}$ be the transposition maps:

$$
\begin{array}{ll}
\mu_{12}: B^{\otimes^{3}} \rightarrow B^{\otimes^{3}}, & x \otimes y \otimes z \mapsto y \otimes x \otimes z, \\
\mu_{13}: B^{\otimes^{3}} \rightarrow B^{\otimes^{3}}, & x \otimes y \otimes z \mapsto z \otimes y \otimes x, \\
\mu_{23}: B^{\otimes^{3}} \rightarrow B^{\otimes^{3}}, & x \otimes y \otimes z \mapsto x \otimes z \otimes y
\end{array}
$$

Next, define $R_{i j}: H^{\otimes^{3}} \rightarrow H^{\otimes^{3}}$ to be the composition of maps $R_{i j}=\mu_{i j} R^{i j}$. Note that R_{12} and R_{23} are invertible K-linear transformations of $H^{\otimes^{3}}$ which correspond to matrices in $\mathrm{GL}_{n^{3}}(K)$ (with respect to the K-basis $\left\{c_{i} \otimes c_{j} \otimes c_{k}\right\}$).

Proposition 10. Let K be a field and let (B, R) be a quasitriangular bialgebra of dimension n over K. Then the matrices R_{12}, R_{23} in $G L_{n^{3}}(K)$ satisfy

$$
\begin{equation*}
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23} . \tag{5}
\end{equation*}
$$

Proof. Use Drinfeld's result. See [6, §4.3].

Equation (5) is known as the braid relation.

3. Variations

Recall Nigel's Example 4 above:

Proposition 11 (Byott) [1]. Let $n \geq 1$, and let
$M_{n}=\left\{1, a, a^{2}, \ldots, a^{n}\right\}$ be the monoid with multiplication defined as $a^{i} a^{j}=a^{i+j}$ if $i+j \leq n$ and $a^{i} a^{j}=a^{n}$ if $i+j>n$. Let $K M_{n}$ be the monoid bialgebra with linear dual $K M_{n}^{D}$. Then $1 \otimes 1$ is the only quasitriangular structure on $K M_{n}^{D}$.

Proof. Let $B=K M_{n}^{D}$. Clearly, $1 \otimes 1 \in U(B \otimes B)$ is a quasitriangular structure on B. Suppose $R \in U(B \otimes B)$ is a quasitriangular structure. Write

$$
R=\sum_{a^{i}, a^{j} \in M_{n}}\left\langle a^{i}, a^{j}\right\rangle e_{a^{i}} \otimes e_{a^{j}},
$$

for $\left\langle a^{i}, a^{j}\right\rangle \in K^{\times}, e_{a^{i}}\left(a_{j}\right)=\delta_{i, j}$.

Thus,

$$
\left(\Delta_{B} \otimes I_{B}\right) R=\sum_{a^{r}, a^{s}, a^{j} \in M}\left\langle a^{r} a^{s}, a^{j}\right\rangle e_{a^{r}} \otimes e_{a^{s}} \otimes e_{a^{j}},
$$

and

$$
\begin{aligned}
& R^{13} R^{23}=\left(\sum_{a^{i}, a^{j} \in M_{n}}\left\langle a^{i}, a^{j}\right\rangle e_{a^{i}} \otimes 1 \otimes e_{a^{j}}\right) \\
& \quad \times\left(\sum_{a^{i}, a^{j} \in M_{n}}\left\langle a^{i}, a^{j}\right\rangle 1 \otimes e_{a^{i}} \otimes e_{a^{j}}\right) \\
& =\sum_{a^{r}, a^{s}, a^{j} \in M_{n}}\left\langle a^{r}, a^{j}\right\rangle\left\langle a^{s}, a^{j}\right\rangle e_{a^{r}} \otimes e_{a^{s}} \otimes e_{a^{j}} .
\end{aligned}
$$

And so,

$$
\left\langle a^{r} a^{s}, a^{j}\right\rangle=\left\langle a^{r}, a^{j}\right\rangle\left\langle a^{s}, a^{j}\right\rangle,
$$

for all $a^{r}, a^{s}, a^{j} \in M_{n}$.

Now,

$$
\left\langle a^{n}, a^{j}\right\rangle=\left\langle a^{r} a^{n}, a^{j}\right\rangle=\left\langle a^{r}, a^{j}\right\rangle\left\langle a^{n}, a^{j}\right\rangle,
$$

for $a^{r}, a^{j} \in M_{n}$. And so, since $\left\langle a^{n}, a^{j}\right\rangle \in K^{\times}$,

$$
\left\langle a^{r}, a^{j}\right\rangle=1
$$

for all $a^{r}, a^{j} \in M_{n}$. It follows that $R=1 \otimes 1$.

Remark 12. Similar to Proposition 11, the condition $\left(I_{B} \otimes \Delta_{B}\right) R=R^{13} R^{12}$ implies

$$
\left\langle a^{i}, a^{r} a^{s}\right\rangle=\left\langle a^{i}, a^{r}\right\rangle\left\langle a^{i}, a^{s}\right\rangle
$$

for all $a^{i}, a^{r}, a^{s} \in M_{n}$, and so, quasitriangular structures on $K M^{D}$ correspond to bimorphisms $M_{n} \times M_{n} \rightarrow K^{\times}$on M_{n}.
(Of course, in this case there is only one quasitriangular structure on $B=K M_{n}^{D}$, namely the trivial structure $R=1 \otimes 1$, and consequently, there is exactly one bimorphism on M_{n}, namely the trivial bimorphism.)

We ask: what happens if we relax the definition of quasitriangular structure?

Suppose we no longer require

$$
\tau\left(\Delta_{B}(b)\right)=R \Delta_{B}(b) R^{-1}
$$

(it's weak, as in [1, slide 7]), and we no longer require that R be a unit in $B \otimes B$ (it's singular).

Definition 13. Let B be a K-bialgebra, and let $R \in B \otimes B$. Then R is a singular weak quasitriangular structure (SWQTS) on B if

$$
\begin{align*}
& \left(\Delta_{B} \otimes I_{B}\right) R=R^{13} R^{23} \tag{6}\\
& \left(I_{B} \otimes \Delta_{B}\right) R=R^{13} R^{12} \tag{7}
\end{align*}
$$

How do we compute the singular weak quasitriangular structures on B ? Of some help may be the following:

Proposition 14 (Drinfeld [3].) Let $R=\sum_{i=1}^{n} a_{i} \otimes b_{i}$ be a singular weak quasitriangular structure on B. Then
(i) $\left(1 \otimes \sum_{i=1}^{n} \epsilon_{B}\left(a_{i}\right) b_{i}\right) R=R$,
(ii) $\left(\sum_{i=1}^{n} \epsilon_{B}\left(b_{i}\right) a_{i} \otimes 1\right) R=R$.

Proof. See [3], [6, Proposition 4.1.9].
(Easier task:) Find all of the singular weak quasitriangular structures on $K M_{n}^{D}, n \geq 1$.

Apparently, they will correspond to bimorphisms $M_{n} \times M_{n} \rightarrow K$ (K, now, and not K^{\times}).

We consider the (modest) cases $n=1,2$.

Case I. $n=1$. Here, $M_{1}=\{1, a\}$ with table

	1	a
1	1	a
a	a	a

Let $B=K M_{1}^{D}$. Proposition 14 says we should look for structures of the form

$$
R=e_{1} \otimes e_{1}+e_{1} \otimes e_{a}+e_{a} \otimes e_{1}+z e_{a} \otimes e_{a}
$$

for $z \in K$.

But then, $\left(\Delta_{B} \otimes I_{B}\right) R=R^{13} R^{23}$ if and only if $z^{2}=z$.

This gives two structures:

$$
R_{0}=1 \otimes 1=e_{1} \otimes e_{1}+e_{1} \otimes e_{a}+e_{a} \otimes e_{1}+e_{a} \otimes e_{a},
$$

which we already knew about, and another:

$$
R_{1}=e_{1} \otimes e_{1}+e_{1} \otimes e_{a}+e_{a} \otimes e_{1}
$$

We have a non-trivial bimorphism on M_{1} defined by

$$
\langle 1,1\rangle=1,\langle 1, a\rangle=1,\langle a, 1\rangle=1,\langle a, a\rangle=0 .
$$

Case II. $n=2$. Here, $M_{2}=\left\{1, a, a^{2}\right\}$ with table

	1	a	a^{2}
1	1	a	a^{2}
a	a	a^{2}	a^{2}
a^{2}	a^{2}	a^{2}	a^{2}

Let $B=K M_{2}^{D}$. Proposition 14 says we should look for structures of the form

$$
R=e_{1} \otimes e_{1}+e_{1} \otimes e_{a}+e_{1} \otimes e_{a^{2}}+e_{a} \otimes e_{1}+w e_{a} \otimes e_{a}+x e_{a} \otimes e_{a^{2}}
$$

$$
+e_{a^{2}} \otimes e_{1}+y e_{a^{2}} \otimes e_{a}+z e_{a^{2}} \otimes e_{a^{2}}
$$

$w, x, y, z \in K$.

But then, $\left(\Delta_{B} \otimes I_{B}\right) R=R^{13} R^{23}$ if and only if

$$
\left\{\begin{array}{l}
y=w^{2} \\
y=y^{2} \\
y=w y \\
z=x^{2} \\
z=z^{2} \\
z=x z
\end{array}\right.
$$

Solving this system yields 4 structures on B :

$$
R_{0}=1 \otimes 1
$$

$R_{1}=e_{1} \otimes e_{1}+e_{1} \otimes e_{a}+e_{1} \otimes e_{a^{2}}+e_{a} \otimes e_{1}+e_{a^{2}} \otimes e_{1}+e_{a} \otimes e_{a^{2}}+e_{a^{2}} \otimes e_{a^{2}}$,
$R_{2}=e_{1} \otimes e_{1}+e_{1} \otimes e_{a}+e_{1} \otimes e_{a^{2}}+e_{a} \otimes e_{1}+e_{a^{2}} \otimes e_{1}+e_{a} \otimes e_{a}+e_{a^{2}} \otimes e_{a}$,

$$
R_{3}=e_{1} \otimes e_{1}+e_{1} \otimes e_{a}+e_{1} \otimes e_{a^{2}}+e_{a} \otimes e_{1}+e_{a^{2}} \otimes e_{1},
$$

and (apparently) 4 bimorphisms $M_{2} \times M_{2} \rightarrow K$ on M_{2}.

Some of this can be explained by examining the structure of $K M_{n}$ an a K-algebra.

Proposition 15. Let $J\left(K M_{n}\right)$ denote the Jacobson radical of $K M_{n}, n \geq 1$.
(i) $J\left(K M_{n}\right)=\left(a-a^{n}\right), \operatorname{dim}_{K}\left(a-a^{n}\right)=n-1$.
(ii)

$$
K M_{n} \cong K a \oplus K(1-a) \oplus \bigoplus_{i=1}^{n-1}\left(a^{i}-a^{n}\right)
$$

(iii) $K M_{n} / J\left(K M_{n}\right) \cong K M_{1} \cong K \times K$.

围 N．Byott，Quasitriangular structures on（dual）monoid rings， paper presented at Omaha 2014，Omaha，NE，May 2014.
圊 V．G．Drinfeld，On almost commutative Hopf algebras， Leningrad Math．J．，1，（1990），321－342．
囯 V．G．Drinfeld，Quantum groups，Proc．Inter．Congress of Math．，1，Berkeley，CA，（1986），789－820．

國 S．Montgomery，Hopf Algebras and Their Actions on Rings， American Mathematical Society，CBMS Regional Conference Series in Mathematics，82，（1993）．
嗇 D．E．Radford，Minimal quasitriangular Hopf algebras，J． Algebra，157，（1993），285－315．
圊 R．G．Underwood，Fundamentals of Hopf Algebras，UTX， Springer， 2015.

